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•  Truly distributed logical framework with explicit proof objects 
•  Cyber-predicates enable interaction with the physical world 
•  Facts and goals treated on an equal footing 
•  Covers entire spectrum between autonomy and cooperation 
•  Tested with abstract mobility model and Stage multi-robot simulator 
•  Soundness, Completeness, and Termination Conditions 

≥ K Cyber-Node Cyber-Node 

•  Based on new loosely-coupled distributed computing model:  
 Partially Ordered Knowledge Sharing 

•  Inspired by our earlier work on delay-/disruption-tolerant networking (DTN) 
•  Minimal assumptions on network connectivity (can be very unreliable) 
•  Works with dynamic topologies, network partitions, and mobile nodes 
•  Designed for heterogeneous networking technologies and heterogeneous nodes 
•  Partial order allows the network to replace obsolete or subsumed knowledge 
•  Global consistency is not enforced (impossible in challenging environments) 
•  Avoids strong non-implementable primitives, e.g. transactions 
•  Locally each cyber-node uses an event-based model with local time 
•  Events are local, but knowledge can be shared and cached in the network 
•  Each cyber-node can have attached cyber-physical devices 
•  Framework supports  

-  model-based simulation 
-  probabilistic analysis algorithms 
-  real-world deployment/execution 
-  visualization of simulated NCPS 

Γ � ∆ @ t, x

Γ � ∆, C(G) : G @ t�, x
if G = pc(t, . . .) is a cyber-goal (Control)

Γ � ∆ @ t, x

Γ, O(F ) : F � ∆ @ t�, x
if F = pc(t, . . .) is a cyber-fact (Observation)

Γ, f : F � ∆ @ t, x

Γ � ∆ @ t�, x
if f : F ≺ Γ, ∆ (Replacement1)

Γ � ∆, g : G @ t, x

Γ � ∆ @ t�, x
if g : G ≺ Γ, ∆ (Replacement2)

Γx � ∆x @ tx, x Γy, f : F � ∆y @ ty, y

Γx, f : F � ∆x @ t�x, x
(Communication1)

if x �= y, t�x ≥ ty, and f : F is fresh at x.

Γx � ∆x @ tx, x Γy � ∆y, g : G @ ty, y

Γx � ∆x, g : G @ t�x, x
(Communication2)

if x �= y, t�x ≥ ty, and g : G is fresh at x

Γ � ∆, g : G @ t, x

Γ, Bσ(g) : σ(G) � ∆, g : G @ t�, x
(Built-in)

if G is a built-in goal with a solution σ(G) such that Bσ(g) : σ(G) is fresh.

Γ, f1 : σ(P1), . . . , fn : σ(Pn) � ∆ @ t, x

Γ, f1 : σ(P1), . . . , fn : σ(Pn), f : σ(Q) � ∆ @ t�, x
(Forward1)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωf ,
f = lσ(f1, . . . , fn), σ(Q) is a fact, and f : σ(Q) is fresh.

Γ, f1 : σ(P1), . . . , fj−1 : σ(Pj−1) � ∆ @ t, x

Γ, f1 : σ(P1), . . . , fj−1 : σ(Pj−1) � ∆, g : σ(Pj) @ t�, x
(Forward2)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωf ,
g = l−1

σ (f1, . . . , fj−1), σ(Pj) is a goal, and g : σ(Pj) is fresh.

Γ, f1 : σ(P1), . . . , fn : σ(Pn) � ∆, g� : G� @ t, x

Γ, f1 : σ(P1), . . . , fn : σ(Pn), f : σ(Q) � ∆, g� : G� @ t�, x
(Backward1)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωb,
f = lσ(f1, . . . , fn; g�), σ(Q) = σ(G�), σ(Q) is a fact, and f : σ(Q) is fresh.

Γ, f1 : σ(P1), . . . , fj−1 : σ(Pj−1) � ∆, g� : G� @ t, x

Γ, f1 : σ(P1), . . . , fj−1 : σ(Pj−1) � ∆, g� : G�, g : σ(Pj) @ t�, x
(Backward2)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωb,
g = l−1

σ (f1, . . . , fj−1; g
�), σ(Q) = σ(G�), σ(Pj) is a goal, and g : σ(Pj) is fresh.

Γ � ∆ @ t, x

Γ � ∆ @ t�, x
(Sleep)

Notes. An implicit side condition t < t� is omitted in all proof rules (tx < t�x in the
communication rules). In the context of a proof rule that has a premise Γ � ∆ @ t, x
we say that K is fresh (at x) if there is no K� ∈ Γ, ∆ such that K ≡ K� or K ≺ K�.
In the condition of proof rules we use σ to range over all most general (not necessarily
ground) substitutions that satisfy the condition of the proof rule.

Fig. 3. Proof Rules of our Distributed Logical Framework for NCPS
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Completeness Theorem 

to cj for j ≥ i. An execution is logically fair iff each instance of a reasoning rule,

i.e., either a built-in, forward, or backward rule, that is permanently applicable

at i is applied at some j ≥ i. Similarly, an execution is replacement fair iff each

instance of a replacement rule that is permanently applicable at i is applied at

some j ≥ i. An execution is communication fair iff each instance of a commu-

nication rule that is permanently applicable at i is applied at some j ≥ i. An

execution is globally fair iff it is logically, replacement, and communication fair.

Definition 2 (Subsumption Preservation). We say subsumption is preserved

iff whenever Ki ≤ K �
i

and K1, . . . ,Kn �1 K, then there exists K �
such that

K �
1, . . . ,K

�
n �1 K �

and K ≤ K �
(recall that K ranges over derived atoms).

Definition 3 (Replacement Conditions). Replacement is restricted iff the

following conditions hold: (1) If K1 ≺ K2, then K2 ��+ K1. (2) If K1 ≺ K2,

K1 ��+ K2 and K1 �< K2, then there exists atomic K �
1, K

�
2 such that K �

1 �∗ K1,

K �
2 �∗ K2 and K �

1 ≺ K �
2. (3) If K1 ≺ K2, K1 �+ K2, K1 �+ K3, K3 ��+ K2, and

K2 ��+ K3, then K3 ≤ K2. (4) If K1 ≤ K2 and there is an atomic K �
2 �∗ K2

with K �
2 ≺ K, then there is an atomic K �

1 �∗ K1 with K �
1 ≺ K.

We say that a derived fact f :F is eventually covered in π there is some i and

f � :F � ∈ F(ci) such that f :F ≤ f � :F �
. The essence of completeness is that if

F � F for a subset of the observed facts of an execution, then some derivation

of F will be eventually covered in the execution. The completeness theorem

statement refines this, beginning with sufficient constraints for completeness to

hold. The statement is broken into two parts, first showing provability implies

derivability, and second showing that if a derived fact f :F is entailed by subset of

the observations of an execution, f :F will eventually be covered. This is further

split into two cases depending whether the final rule in the Horn clause derivation

is a forwards or backwards rule. This is needed to account for the requirement

that there must be a goal that unifies with a backwards rule conclusion before

the rule can be applied, and thus in the backwards case, the theorem only applies

to instances of goals.

Theorem 2 (Completeness). Let π be a logically and communication fair ex-

ecution, and let F ⊆ FO
(π) and G ⊆ GC

(π) be such that each element in F ∪ G
is maximal in FO

(π)∪GC
(π) w.r.t. the replacement ordering. Assume subsump-

tion is preserved, upward well-founded, and that replacement is restricted. If

at(F) �f F then there exists a derived fact f :F such that F � f :F , which in

turn implies that f :F is eventually covered in π. If G ∈ at(G) and at(F) �b σ(G)

then there exists a derived fact f :σ(G) such that F ,G � f :σ(G), which in turn

implies that f :σ(G) is eventually covered in π. Here �f (�g) denote Horn clause

derivability where the last clause applied is from Ωf (Ωg).

Proof. As for soundness the proof has two parts: (a) showing that entailment in

the Horn logic sense implies entailment in derived-atom sense, and (b) showing

that a derived-atom derivable from the observed facts and injected (control)

goals will eventually be covered in an execution. The proof of (a) is similar
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holds because derived atoms that appear in π are entailed by previous observa-

tions and controls of π, and entailment on derived atoms implies entailment in

Horn clause logic.

Theorem 1 (Soundness). For every step i of π, and for each f :F ∈ F(ci),
we have FO

(π|i),GC
(π|i) � f :F , which in turn implies FO

(π|i) � F .

Proof. By Lemmas 1 and 2 below. ��

Lemma 1 (Derivability implies provability). If f :F is a derived fact and
F is the set of facts underlying the atomic subderivations of f :F then F � F

Proof. We show F � F by cases on f . If f :F is Bσ(g) :σ(G), then � σ(G)

by definition of derived facts. If f :F is O(F ) :F we have O(F ) � O(F ). If f :F
is lσ(f1, . . . , fn, [g�]) :σ(Q), with l :P1, . . . , Pn ⇒ Q in Ω, then by induction we

have F � fi :σ(Pi), 1 ≤ i ≤ n and F � σ(Q), applying clause l. ��

Lemma 2 (Derivations are derivable). If f :F ∈ F(ci) and g :G ∈ G(ci),
then FO

(π|i), GC
(π|i) � f :F and FO

(π|i), GC
(π|i) � g :G.

Proof. The proof is by induction on i. Note that FO
(π|i−1), GC

(π|i−1) � f :F
implies FO

(π|i), GC
(π|i) � f :F (monotonicity of �). We only need to consider

rules ri that introduce a new derived fact f :F or goal g :G at some cyber-node

x. There are five cases for facts and four for goals. Here we show a few cases to

illustrate the arguments (see [8] for the full proof).

(Observation) f :F is O(F ) :F , which is in FO
(π|i).

(Forward1) f :F is lσ(f1, . . . , fn) :σ(Q), l :P1, . . . , Pn ⇒ Q ∈ Ωf , fj :σ(Pj) ∈
F(ci−1), 1 ≤ j ≤ n. By induction FO

(π|i−1), GC
(π|i−1) � fj :Fj for 1 ≤ j ≤ n

and so FO
(π|i), GC

(π|i) � f :F .

(Forward2) g :G is l−1
σ (f1, . . . , fj−1) :σ(Pj), l :P1, . . . , Pn ⇒ Q ∈ Ωf , and fk :σ(Pk) ∈

F(ci−1), 1 ≤ k < j. By induction FO
(π|i−1), GC

(π|i−1) � fk :Fk for 1 ≤ k < j
and thus FO

(π|i), GC
(π|i) � g :G. ��

Note that Monotonicity and Soundness are independent of the specific theory;

in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will

eventually be covered (either directly or by subsumption). These conditions in-

clude fairness conditions on executions and consistency conditions between the

theory and the subsumption and replacement orderings.

Definition 1 (Weak Fairness). A rule instance contains the parameters that
determine whether a rule applies in a configuration and if so, what the result is.
It is given by the rule name, the node(s), the clause label, substitution, and all de-
rived facts or goals involved in the application. For example, Forward1(x, l,σ, f1 :

σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) :σ(Q)) represents an instance of the first for-
ward rule. A rule instance ρ is permanently applicable in π at i iff ρ is applicable
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holds because derived atoms that appear in π are entailed by previous observa-

tions and controls of π, and entailment on derived atoms implies entailment in

Horn clause logic.

Theorem 1 (Soundness). For every step i of π, and for each f :F ∈ F(ci),
we have FO

(π|i),GC
(π|i) � f :F , which in turn implies FO

(π|i) � F .

Proof. By Lemmas 1 and 2 below. ��

Lemma 1 (Derivability implies provability). If f :F is a derived fact and
F is the set of facts underlying the atomic subderivations of f :F then F � F

Proof. We show F � F by cases on f . If f :F is Bσ(g) :σ(G), then � σ(G)

by definition of derived facts. If f :F is O(F ) :F we have O(F ) � O(F ). If f :F
is lσ(f1, . . . , fn, [g�]) :σ(Q), with l :P1, . . . , Pn ⇒ Q in Ω, then by induction we

have F � fi :σ(Pi), 1 ≤ i ≤ n and F � σ(Q), applying clause l. ��

Lemma 2 (Derivations are derivable). If f :F ∈ F(ci) and g :G ∈ G(ci),
then FO

(π|i), GC
(π|i) � f :F and FO

(π|i), GC
(π|i) � g :G.

Proof. The proof is by induction on i. Note that FO
(π|i−1), GC

(π|i−1) � f :F
implies FO

(π|i), GC
(π|i) � f :F (monotonicity of �). We only need to consider

rules ri that introduce a new derived fact f :F or goal g :G at some cyber-node

x. There are five cases for facts and four for goals. Here we show a few cases to

illustrate the arguments (see [8] for the full proof).

(Observation) f :F is O(F ) :F , which is in FO
(π|i).

(Forward1) f :F is lσ(f1, . . . , fn) :σ(Q), l :P1, . . . , Pn ⇒ Q ∈ Ωf , fj :σ(Pj) ∈
F(ci−1), 1 ≤ j ≤ n. By induction FO

(π|i−1), GC
(π|i−1) � fj :Fj for 1 ≤ j ≤ n

and so FO
(π|i), GC

(π|i) � f :F .

(Forward2) g :G is l−1
σ (f1, . . . , fj−1) :σ(Pj), l :P1, . . . , Pn ⇒ Q ∈ Ωf , and fk :σ(Pk) ∈

F(ci−1), 1 ≤ k < j. By induction FO
(π|i−1), GC

(π|i−1) � fk :Fk for 1 ≤ k < j
and thus FO

(π|i), GC
(π|i) � g :G. ��

Note that Monotonicity and Soundness are independent of the specific theory;

in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will

eventually be covered (either directly or by subsumption). These conditions in-

clude fairness conditions on executions and consistency conditions between the

theory and the subsumption and replacement orderings.

Definition 1 (Weak Fairness). A rule instance contains the parameters that
determine whether a rule applies in a configuration and if so, what the result is.
It is given by the rule name, the node(s), the clause label, substitution, and all de-
rived facts or goals involved in the application. For example, Forward1(x, l, σ, f1 :

σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) :σ(Q)) represents an instance of the first for-
ward rule. A rule instance ρ is permanently applicable in π at i iff ρ is applicable
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to cj for j ≥ i. An execution is logically fair iff each instance of a reasoning rule,

i.e., either a built-in, forward, or backward rule, that is permanently applicable

at i is applied at some j ≥ i. Similarly, an execution is replacement fair iff each

instance of a replacement rule that is permanently applicable at i is applied at

some j ≥ i. An execution is communication fair iff each instance of a commu-

nication rule that is permanently applicable at i is applied at some j ≥ i. An

execution is globally fair iff it is logically, replacement, and communication fair.

Definition 2 (Subsumption Preservation). We say subsumption is preserved

iff whenever Ki ≤ K �
i

and K1, . . . ,Kn �1 K, then there exists K �
such that

K �
1, . . . ,K

�
n �1 K �

and K ≤ K �
(recall that K ranges over derived atoms).

Definition 3 (Replacement Conditions). Replacement is restricted iff the

following conditions hold: (1) If K1 ≺ K2, then K2 ��+ K1. (2) If K1 ≺ K2,

K1 ��+ K2 and K1 �< K2, then there exists atomic K �
1, K

�
2 such that K �

1 �∗ K1,

K �
2 �∗ K2 and K �

1 ≺ K �
2. (3) If K1 ≺ K2, K1 �+ K2, K1 �+ K3, K3 ��+ K2, and

K2 ��+ K3, then K3 ≤ K2. (4) If K1 ≤ K2 and there is an atomic K �
2 �∗ K2

with K �
2 ≺ K, then there is an atomic K �

1 �∗ K1 with K �
1 ≺ K.

We say that a derived fact f :F is eventually covered in π there is some i and

f � :F � ∈ F(ci) such that f :F ≤ f � :F �
. The essence of completeness is that if

F � F for a subset of the observed facts of an execution, then some derivation

of F will be eventually covered in the execution. The completeness theorem

statement refines this, beginning with sufficient constraints for completeness to

hold. The statement is broken into two parts, first showing provability implies

derivability, and second showing that if a derived fact f :F is entailed by subset of

the observations of an execution, f :F will eventually be covered. This is further

split into two cases depending whether the final rule in the Horn clause derivation

is a forwards or backwards rule. This is needed to account for the requirement

that there must be a goal that unifies with a backwards rule conclusion before

the rule can be applied, and thus in the backwards case, the theorem only applies

to instances of goals.

Theorem 2 (Completeness). Let π be a logically and communication fair ex-

ecution, and let F ⊆ FO
(π) and G ⊆ GC

(π) be such that each element in F ∪ G
is maximal in FO

(π)∪GC
(π) w.r.t. the replacement ordering. Assume subsump-

tion is preserved, upward well-founded, and that replacement is restricted. If

at(F) �f F then there exists a derived fact f :F such that F � f :F , which in

turn implies that f :F is eventually covered in π. If G ∈ at(G) and at(F) �b σ(G)

then there exists a derived fact f :σ(G) such that F ,G � f :σ(G), which in turn

implies that f :σ(G) is eventually covered in π. Here �f (�g) denote Horn clause

derivability where the last clause applied is from Ωf (Ωg).

Proof. As for soundness the proof has two parts: (a) showing that entailment in

the Horn logic sense implies entailment in derived-atom sense, and (b) showing

that a derived-atom derivable from the observed facts and injected (control)

goals will eventually be covered in an execution. The proof of (a) is similar
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to cj for j ≥ i. An execution is logically fair iff each instance of a reasoning rule,

i.e., either a built-in, forward, or backward rule, that is permanently applicable

at i is applied at some j ≥ i. Similarly, an execution is replacement fair iff each

instance of a replacement rule that is permanently applicable at i is applied at

some j ≥ i. An execution is communication fair iff each instance of a commu-

nication rule that is permanently applicable at i is applied at some j ≥ i. An

execution is globally fair iff it is logically, replacement, and communication fair.

Definition 2 (Subsumption Preservation). We say subsumption is preserved

iff whenever Ki ≤ K �
i

and K1, . . . ,Kn �1 K, then there exists K �
such that

K �
1, . . . ,K

�
n �1 K �

and K ≤ K �
(recall that K ranges over derived atoms).

Definition 3 (Replacement Conditions). Replacement is restricted iff the

following conditions hold: (1) If K1 ≺ K2, then K2 ��+ K1. (2) If K1 ≺ K2,

K1 ��+ K2 and K1 �< K2, then there exists atomic K �
1, K

�
2 such that K �

1 �∗ K1,

K �
2 �∗ K2 and K �

1 ≺ K �
2. (3) If K1 ≺ K2, K1 �+ K2, K1 �+ K3, K3 ��+ K2, and

K2 ��+ K3, then K3 ≤ K2. (4) If K1 ≤ K2 and there is an atomic K �
2 �∗ K2

with K �
2 ≺ K, then there is an atomic K �

1 �∗ K1 with K �
1 ≺ K.

We say that a derived fact f :F is eventually covered in π there is some i and

f � :F � ∈ F(ci) such that f :F ≤ f � :F �
. The essence of completeness is that if

F � F for a subset of the observed facts of an execution, then some derivation

of F will be eventually covered in the execution. The completeness theorem

statement refines this, beginning with sufficient constraints for completeness to

hold. The statement is broken into two parts, first showing provability implies

derivability, and second showing that if a derived fact f :F is entailed by subset of

the observations of an execution, f :F will eventually be covered. This is further

split into two cases depending whether the final rule in the Horn clause derivation

is a forwards or backwards rule. This is needed to account for the requirement

that there must be a goal that unifies with a backwards rule conclusion before

the rule can be applied, and thus in the backwards case, the theorem only applies

to instances of goals.

Theorem 2 (Completeness). Let π be a logically and communication fair ex-

ecution, and let F ⊆ FO
(π) and G ⊆ GC

(π) be such that each element in F ∪ G
is maximal in FO

(π)∪GC
(π) w.r.t. the replacement ordering. Assume subsump-

tion is preserved, upward well-founded, and that replacement is restricted. If

at(F) �f F then there exists a derived fact f :F such that F � f :F , which in

turn implies that f :F is eventually covered in π. If G ∈ at(G) and at(F) �b σ(G)

then there exists a derived fact f :σ(G) such that F ,G � f :σ(G), which in turn

implies that f :σ(G) is eventually covered in π. Here �f (�g) denote Horn clause

derivability where the last clause applied is from Ωf (Ωg).

Proof. As for soundness the proof has two parts: (a) showing that entailment in

the Horn logic sense implies entailment in derived-atom sense, and (b) showing

that a derived-atom derivable from the observed facts and injected (control)

goals will eventually be covered in an execution. The proof of (a) is similar
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to cj for j ≥ i. An execution is logically fair iff each instance of a reasoning rule,

i.e., either a built-in, forward, or backward rule, that is permanently applicable

at i is applied at some j ≥ i. Similarly, an execution is replacement fair iff each

instance of a replacement rule that is permanently applicable at i is applied at

some j ≥ i. An execution is communication fair iff each instance of a commu-

nication rule that is permanently applicable at i is applied at some j ≥ i. An

execution is globally fair iff it is logically, replacement, and communication fair.

Definition 2 (Subsumption Preservation). We say subsumption is preserved

iff whenever Ki ≤ K �
i

and K1, . . . ,Kn �1 K, then there exists K �
such that

K �
1, . . . ,K

�
n �1 K �

and K ≤ K �
(recall that K ranges over derived atoms).

Definition 3 (Replacement Conditions). Replacement is restricted iff the

following conditions hold: (1) If K1 ≺ K2, then K2 ��+ K1. (2) If K1 ≺ K2,

K1 ��+ K2 and K1 �< K2, then there exists atomic K �
1, K

�
2 such that K �

1 �∗ K1,

K �
2 �∗ K2 and K �

1 ≺ K �
2. (3) If K1 ≺ K2, K1 �+ K2, K1 �+ K3, K3 ��+ K2, and

K2 ��+ K3, then K3 ≤ K2. (4) If K1 ≤ K2 and there is an atomic K �
2 �∗ K2

with K �
2 ≺ K, then there is an atomic K �

1 �∗ K1 with K �
1 ≺ K.

We say that a derived fact f :F is eventually covered in π there is some i and

f � :F � ∈ F(ci) such that f :F ≤ f � :F �
. The essence of completeness is that if

F � F for a subset of the observed facts of an execution, then some derivation

of F will be eventually covered in the execution. The completeness theorem

statement refines this, beginning with sufficient constraints for completeness to

hold. The statement is broken into two parts, first showing provability implies

derivability, and second showing that if a derived fact f :F is entailed by subset of

the observations of an execution, f :F will eventually be covered. This is further

split into two cases depending whether the final rule in the Horn clause derivation

is a forwards or backwards rule. This is needed to account for the requirement

that there must be a goal that unifies with a backwards rule conclusion before

the rule can be applied, and thus in the backwards case, the theorem only applies

to instances of goals.

Theorem 2 (Completeness). Let π be a logically and communication fair ex-

ecution, and let F ⊆ FO
(π) and G ⊆ GC

(π) be such that each element in F ∪ G
is maximal in FO

(π)∪GC
(π) w.r.t. the replacement ordering. Assume subsump-

tion is preserved, upward well-founded, and that replacement is restricted. If

at(F) �f F then there exists a derived fact f :F such that F � f :F , which in

turn implies that f :F is eventually covered in π. If G ∈ at(G) and at(F) �b σ(G)

then there exists a derived fact f :σ(G) such that F ,G � f :σ(G), which in turn

implies that f :σ(G) is eventually covered in π. Here �f (�g) denote Horn clause

derivability where the last clause applied is from Ωf (Ωg).

Proof. As for soundness the proof has two parts: (a) showing that entailment in

the Horn logic sense implies entailment in derived-atom sense, and (b) showing

that a derived-atom derivable from the observed facts and injected (control)

goals will eventually be covered in an execution. The proof of (a) is similar
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holds because derived atoms that appear in π are entailed by previous observa-

tions and controls of π, and entailment on derived atoms implies entailment in

Horn clause logic.

Theorem 1 (Soundness). For every step i of π, and for each f :F ∈ F(ci),
we have FO

(π|i),GC
(π|i) � f :F , which in turn implies FO

(π|i) � F .

Proof. By Lemmas 1 and 2 below. ��

Lemma 1 (Derivability implies provability). If f :F is a derived fact and
F is the set of facts underlying the atomic subderivations of f :F then F � F

Proof. We show F � F by cases on f . If f :F is Bσ(g) :σ(G), then � σ(G)

by definition of derived facts. If f :F is O(F ) :F we have O(F ) � O(F ). If f :F
is lσ(f1, . . . , fn, [g�]) :σ(Q), with l :P1, . . . , Pn ⇒ Q in Ω, then by induction we

have F � fi :σ(Pi), 1 ≤ i ≤ n and F � σ(Q), applying clause l. ��

Lemma 2 (Derivations are derivable). If f :F ∈ F(ci) and g :G ∈ G(ci),
then FO

(π|i), GC
(π|i) � f :F and FO

(π|i), GC
(π|i) � g :G.

Proof. The proof is by induction on i. Note that FO
(π|i−1), GC

(π|i−1) � f :F
implies FO

(π|i), GC
(π|i) � f :F (monotonicity of �). We only need to consider

rules ri that introduce a new derived fact f :F or goal g :G at some cyber-node

x. There are five cases for facts and four for goals. Here we show a few cases to

illustrate the arguments (see [8] for the full proof).

(Observation) f :F is O(F ) :F , which is in FO
(π|i).

(Forward1) f :F is lσ(f1, . . . , fn) :σ(Q), l :P1, . . . , Pn ⇒ Q ∈ Ωf , fj :σ(Pj) ∈
F(ci−1), 1 ≤ j ≤ n. By induction FO

(π|i−1), GC
(π|i−1) � fj :Fj for 1 ≤ j ≤ n

and so FO
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Note that Monotonicity and Soundness are independent of the specific theory;

in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will

eventually be covered (either directly or by subsumption). These conditions in-

clude fairness conditions on executions and consistency conditions between the

theory and the subsumption and replacement orderings.

Definition 1 (Weak Fairness). A rule instance contains the parameters that
determine whether a rule applies in a configuration and if so, what the result is.
It is given by the rule name, the node(s), the clause label, substitution, and all de-
rived facts or goals involved in the application. For example, Forward1(x, l, σ, f1 :

σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) :σ(Q)) represents an instance of the first for-
ward rule. A rule instance ρ is permanently applicable in π at i iff ρ is applicable
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holds because derived atoms that appear in π are entailed by previous observa-

tions and controls of π, and entailment on derived atoms implies entailment in

Horn clause logic.

Theorem 1 (Soundness). For every step i of π, and for each f :F ∈ F(ci),
we have FO

(π|i),GC
(π|i) � f :F , which in turn implies FO

(π|i) � F .

Proof. By Lemmas 1 and 2 below. ��

Lemma 1 (Derivability implies provability). If f :F is a derived fact and
F is the set of facts underlying the atomic subderivations of f :F then F � F

Proof. We show F � F by cases on f . If f :F is Bσ(g) :σ(G), then � σ(G)

by definition of derived facts. If f :F is O(F ) :F we have O(F ) � O(F ). If f :F
is lσ(f1, . . . , fn, [g�]) :σ(Q), with l :P1, . . . , Pn ⇒ Q in Ω, then by induction we

have F � fi :σ(Pi), 1 ≤ i ≤ n and F � σ(Q), applying clause l. ��

Lemma 2 (Derivations are derivable). If f :F ∈ F(ci) and g :G ∈ G(ci),
then FO

(π|i), GC
(π|i) � f :F and FO

(π|i), GC
(π|i) � g :G.

Proof. The proof is by induction on i. Note that FO
(π|i−1), GC

(π|i−1) � f :F
implies FO

(π|i), GC
(π|i) � f :F (monotonicity of �). We only need to consider

rules ri that introduce a new derived fact f :F or goal g :G at some cyber-node

x. There are five cases for facts and four for goals. Here we show a few cases to

illustrate the arguments (see [8] for the full proof).

(Observation) f :F is O(F ) :F , which is in FO
(π|i).

(Forward1) f :F is lσ(f1, . . . , fn) :σ(Q), l :P1, . . . , Pn ⇒ Q ∈ Ωf , fj :σ(Pj) ∈
F(ci−1), 1 ≤ j ≤ n. By induction FO

(π|i−1), GC
(π|i−1) � fj :Fj for 1 ≤ j ≤ n

and so FO
(π|i), GC

(π|i) � f :F .

(Forward2) g :G is l−1
σ (f1, . . . , fj−1) :σ(Pj), l :P1, . . . , Pn ⇒ Q ∈ Ωf , and fk :σ(Pk) ∈

F(ci−1), 1 ≤ k < j. By induction FO
(π|i−1), GC

(π|i−1) � fk :Fk for 1 ≤ k < j
and thus FO

(π|i), GC
(π|i) � g :G. ��

Note that Monotonicity and Soundness are independent of the specific theory;

in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will

eventually be covered (either directly or by subsumption). These conditions in-

clude fairness conditions on executions and consistency conditions between the

theory and the subsumption and replacement orderings.

Definition 1 (Weak Fairness). A rule instance contains the parameters that
determine whether a rule applies in a configuration and if so, what the result is.
It is given by the rule name, the node(s), the clause label, substitution, and all de-
rived facts or goals involved in the application. For example, Forward1(x, l,σ, f1 :

σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) :σ(Q)) represents an instance of the first for-
ward rule. A rule instance ρ is permanently applicable in π at i iff ρ is applicable
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Lemma 1 (Derivability implies provability). If f :F is a derived fact and
F is the set of facts underlying the atomic subderivations of f :F then F � F

Proof. We show F � F by cases on f . If f :F is Bσ(g) :σ(G), then � σ(G)

by definition of derived facts. If f :F is O(F ) :F we have O(F ) � O(F ). If f :F
is lσ(f1, . . . , fn, [g�]) :σ(Q), with l :P1, . . . , Pn ⇒ Q in Ω, then by induction we

have F � fi :σ(Pi), 1 ≤ i ≤ n and F � σ(Q), applying clause l. ��

Lemma 2 (Derivations are derivable). If f :F ∈ F(ci) and g :G ∈ G(ci),
then FO

(π|i), GC
(π|i) � f :F and FO

(π|i), GC
(π|i) � g :G.

Proof. The proof is by induction on i. Note that FO
(π|i−1), GC

(π|i−1) � f :F
implies FO

(π|i), GC
(π|i) � f :F (monotonicity of �). We only need to consider

rules ri that introduce a new derived fact f :F or goal g :G at some cyber-node

x. There are five cases for facts and four for goals. Here we show a few cases to

illustrate the arguments (see [8] for the full proof).

(Observation) f :F is O(F ) :F , which is in FO
(π|i).

(Forward1) f :F is lσ(f1, . . . , fn) :σ(Q), l :P1, . . . , Pn ⇒ Q ∈ Ωf , fj :σ(Pj) ∈
F(ci−1), 1 ≤ j ≤ n. By induction FO
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and so FO
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σ (f1, . . . , fj−1) :σ(Pj), l :P1, . . . , Pn ⇒ Q ∈ Ωf , and fk :σ(Pk) ∈

F(ci−1), 1 ≤ k < j. By induction FO
(π|i−1), GC

(π|i−1) � fk :Fk for 1 ≤ k < j
and thus FO

(π|i), GC
(π|i) � g :G. ��

Note that Monotonicity and Soundness are independent of the specific theory;

in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will

eventually be covered (either directly or by subsumption). These conditions in-

clude fairness conditions on executions and consistency conditions between the

theory and the subsumption and replacement orderings.

Definition 1 (Weak Fairness). A rule instance contains the parameters that
determine whether a rule applies in a configuration and if so, what the result is.
It is given by the rule name, the node(s), the clause label, substitution, and all de-
rived facts or goals involved in the application. For example, Forward1(x, l, σ, f1 :

σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) :σ(Q)) represents an instance of the first for-
ward rule. A rule instance ρ is permanently applicable in π at i iff ρ is applicable
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Proof. We show F � F by cases on f . If f :F is Bσ(g) :σ(G), then � σ(G)
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(π|i) � f :F (monotonicity of �). We only need to consider

rules ri that introduce a new derived fact f :F or goal g :G at some cyber-node

x. There are five cases for facts and four for goals. Here we show a few cases to

illustrate the arguments (see [8] for the full proof).

(Observation) f :F is O(F ) :F , which is in FO
(π|i).
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in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will

eventually be covered (either directly or by subsumption). These conditions in-

clude fairness conditions on executions and consistency conditions between the

theory and the subsumption and replacement orderings.
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determine whether a rule applies in a configuration and if so, what the result is.
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σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) :σ(Q)) represents an instance of the first for-
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(π|i) � f :F , which in turn implies FO

(π|i) � F .
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x. There are five cases for facts and four for goals. Here we show a few cases to

illustrate the arguments (see [8] for the full proof).
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(π|i).
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in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will
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clude fairness conditions on executions and consistency conditions between the
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is lσ(f1, . . . , fn, [g�]) :σ(Q), with l :P1, . . . , Pn ⇒ Q in Ω, then by induction we

have F � fi :σ(Pi), 1 ≤ i ≤ n and F � σ(Q), applying clause l. ��

Lemma 2 (Derivations are derivable). If f :F ∈ F(ci) and g :G ∈ G(ci),
then FO

(π|i), GC
(π|i) � f :F and FO

(π|i), GC
(π|i) � g :G.

Proof. The proof is by induction on i. Note that FO
(π|i−1), GC

(π|i−1) � f :F
implies FO

(π|i), GC
(π|i) � f :F (monotonicity of �). We only need to consider

rules ri that introduce a new derived fact f :F or goal g :G at some cyber-node

x. There are five cases for facts and four for goals. Here we show a few cases to

illustrate the arguments (see [8] for the full proof).

(Observation) f :F is O(F ) :F , which is in FO
(π|i).

(Forward1) f :F is lσ(f1, . . . , fn) :σ(Q), l :P1, . . . , Pn ⇒ Q ∈ Ωf , fj :σ(Pj) ∈
F(ci−1), 1 ≤ j ≤ n. By induction FO

(π|i−1), GC
(π|i−1) � fj :Fj for 1 ≤ j ≤ n

and so FO
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(π|i) � f :F .

(Forward2) g :G is l−1
σ (f1, . . . , fj−1) :σ(Pj), l :P1, . . . , Pn ⇒ Q ∈ Ωf , and fk :σ(Pk) ∈

F(ci−1), 1 ≤ k < j. By induction FO
(π|i−1), GC

(π|i−1) � fk :Fk for 1 ≤ k < j
and thus FO

(π|i), GC
(π|i) � g :G. ��

Note that Monotonicity and Soundness are independent of the specific theory;

in particular, they hold for the robot theory.

Completeness gives conditions under which a fact provable in the logic will

eventually be covered (either directly or by subsumption). These conditions in-

clude fairness conditions on executions and consistency conditions between the

theory and the subsumption and replacement orderings.

Definition 1 (Weak Fairness). A rule instance contains the parameters that
determine whether a rule applies in a configuration and if so, what the result is.
It is given by the rule name, the node(s), the clause label, substitution, and all de-
rived facts or goals involved in the application. For example, Forward1(x, l,σ, f1 :

σ(P1), . . . , fn :σ(Pn), lσ(f1, . . . , fn) :σ(Q)) represents an instance of the first for-
ward rule. A rule instance ρ is permanently applicable in π at i iff ρ is applicable
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Judgments, Configurations, and Traces 

Γ � ∆ @ t, x

Γ � ∆, G @ t�, x
if G = pc(t, . . .) is a cyber-goal (Control)

Γ � ∆ @ t, x

Γ, F � ∆ @ t�, x
if F = pc(t, . . .) is a cyber-fact (Observation)

Γ, F � ∆ @ t, x

Γ � ∆ @ t�, x
if F ≺ Γ, ∆ (Replacement1)

Γ � ∆, G @ t, x

Γ � ∆ @ t�, x
if G ≺ Γ, ∆ (Replacement2)

Γx � ∆x @ tx, x Γy, F � ∆y @ ty, y

Γx, F � ∆x @ t�x, x
(Communication1)

if x �= y, t�x ≥ ty, and F is fresh at x.

Γx � ∆x @ tx, x Γy � ∆y, G @ ty, y

Γx � ∆x, G @ t�x, x
(Communication2)

if x �= y, t�x ≥ ty, and G is fresh at x

Γ � ∆, G @ t, x

Γ, σ(G) � ∆, G @ t�, x
(Built-in)

if G is a built-in goal with a solution σ(G) such that σ(G) is fresh.

Γ, σ(P1), . . . , σ(Pn) � ∆ @ t, x

Γ, σ(P1), . . . , σ(Pn), σ(Q) � ∆ @ t�, x
(Forward1)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωf ,
and σ(Q) is a fresh fact.

Γ, σ(P1), . . . , σ(Pj−1) � ∆ @ t, x

Γ, σ(P1), . . . , σ(Pj−1) � ∆, σ(Pj) @ t�, x
(Forward2)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωf ,
σ is a most general substitution, σ(Pj) is a goal, and σ(Pj) is fresh.

Γ, σ(P1), . . . , σ(Pn) � ∆, G� @ t, x

Γ, σ(P1), . . . , σ(Pn), σ(Q) � ∆, G� @ t�, x
(Backward1)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωb,
σ(Q) = σ(G�) is a fresh fact.

Γ, σ(P1), . . . , σ(Pj−1) � ∆, G� @ t, x

Γ, σ(P1), . . . , σ(Pj−1) � ∆, G�, σ(Pj) @ t�, x
(Backward2)

if l : P1, . . . , Pn ⇒ Q is a clause from Ωb,
σ(Pj) is a fresh goal, σ is a most general substitution such that σ(Q) = σ(G�).

Γ � ∆ @ t, x

Γ � ∆ @ t�, x
(Sleep)

Fig. 1. Proof Rules of our Distributed Logical Framework for NCPS

applied. Third, there is the choice of the substitution and hence solution in the
rule for built-ins. And finally, there is the sleep rule, which can be implemented
by random waiting using a suitable distribution to make the reasoning process
adaptive to resource constraints and network conditions.

currently active set of facts 

currently active set of goals 

time (discrete) node name (unique) 

configuration: set of judgments 
trace: finite of infinite sequence of configurations 

Soundness 
Theorem 

Completeness 
Theorem 

Networked Quadricopter Testbed 
•  Quadricopters are a very interesting class of cyber-physical devices (equipped with many sensors and actuators including cameras) 
•  Networked quadricopters will allow us to perform collaborative tasks (e.g. formation flying, distributed sensing, monitoring) 
•  Quadricopters (and their components) become devices in the cyber-application framework 
•  Currently controlled from a network of netbooks on the ground (each node can control one or multiple quadricopters) 
•  Can be equipped with gumstix SBC and additional devices (e.g. GPS, digital compass) for more autonomy 
•  Currently experimenting with vision-based localization for indoor-usage (see pictures below) 

Four quadricopters before the launch Four quadricopters controlled by  
the cyber-application framework 

Vision-based localization experiment 
(utilizing Kinect 3D camera) 

Kernel Start 

1)  Load Opt4J modules   
and configuration file 

2)  Initialize modules 

Run modules to configured  
migration period 

Migration  
condition is  
satisfied? 

Handle incoming  
individuals 

Post individuals  
from archive 

Shared  
Knowledge 

 Base 

Snapshot  
condition is  
satisfied? 

Take snapshot 

Termination  
condition is  
satisfied? 

Report 

No 

Yes 

No 

No 

Yes 

Yes 

Convergence Knowledge 

Solution Knowledge 

K 

K 

Distributed Hosts 

Cyber Engine at Cyber Host1 Cyber Engine at Cyber Host1 Cyber Engine at Cyber Host2 

Cyber Node Cyber Node Cyber Node Cyber Node (Thread) 

Island 
sub-population 

Sharing K among Cyber Nodes 

Cyber Engine at Cyber Host1 

Cyber Node Cyber Node Cyber Node Cyber Node (Thread) 

Island 
sub-population 

Sharing K among Cyber Nodes 

Sharing K among Cyber Hosts 

  

K:  Knowledge which includes dominant individuals 

1/throughput (cycle) 

Buffer size (byte) 
Number of used 

processors 

1/throughput (cycle) 

Buffer size (byte) 

Number of used 
processors 

Result of (4 hosts) X (7 threads), local population size: 100 
Result of (2 hosts) X (7 threads), local population size: 200 
Result of (1 hosts) X (7 threads), local population size: 400 
Result of (1 hosts) X (1 threads), local population size: 2800 

•  Distributed and parallel meta-heuristic framework combining  
-  an existing mature sequential optimization framework (Opt4J) with  
-  a loosely coupled distributed island model for scalable parallelization 

•  The parallelism is transparently provided by the cyber-framework 
-  cyber-nodes cooperate by emitting waves of knowledge, which interfere 

until all local solutions asynchronously converge to a global solution  
•  Optimization fits well into the partially ordered knowledge-sharing model 
•  Replacement order is defined by either  

-  single objective function (solution fitness) or  
-  multiple objective functions (Pareto optimality) 

•  Algorithm: population based meta-heuristic optimizer utilizing the island model 
•  Case study: design space exploration of an embedded multimedia system 
•  Key features: scalability and robustness in the optimization problem 
•  Optimizer performance is studied on Internet-wide testbed (Planet Lab) 
•  Possible next steps:  

-  Combining optimization and declarative control 
-  Use of weighted/quantitative/probabilistic logic 
-  A small-scale real-world deployment (e.g., formation flight of quadricopters) 

Knowledge-sharing leads to better  
solutions within a limited time. 

Solutions from parallel and  sequential 
execution represent similar quality. 


