A Logical Framework for Self-Optimizing Networked Cyber-Physical Systems
Mark-Oliver Stehr, Minyoung Kim, Carolyn Talcott

http://ncps.csl.sri.com

Students: Jinwoo Kim (Seoul National Univ.), Vincent Wang (UPenn)

An Application Framework for Networked CPS

« Based on new loosely-coupled distributed computing model: / E
Partially Ordered Knowledge Sharing

« Inspired by our earlier work on delay-/disruption-tolerant networking (DTN)

« Minimal assumptions on network connectivity (can be very unreliable)

» Works with dynamic topologies, network partitions, and mobile nodes

« Designed for heterogeneous networking technologies and heterogeneous nodes

« Partial order allows the network to replace obsolete or subsumed knowledge

* Global consistency is not enforced (impossible in challenging environments)

Enginel

Hostt Engine2

Multi-Paradigm Specifications

!—A—\

[ Cyber

(e

|

“postknowledgel..)
“postEvent(..)
=name{), time{),

“handleknowledgel..)
“handleEvent]..)

“Device Services
“Device Events

=] [

Partially Ordered

Cyber-Application Framework

SRl International

Local behavior

of a node can be
formally specified as a
randomized algebraic
Petri net

Internet
(Global network)

Knowledge Sharing

Cyber-Engine

« Avoids strong non-implementable primitives, e.g. transactions

« Locally each cyber-node uses an event-based model with local time

« Events are local, but knowledge can be shared and cached in the network

« Each cyber-node can have attached cyber-physical devices

*Framework supports
- model-based simulation/analysis mode
- real-world deployment/execution mode

* Applications cannot distinguish

between simulation and reality

Kz

Cyber-Node

Knowledge Manager
+Knowledge Dissemination Protocols
“Deterministic Floading
“Probabilstc Reflection

Knowledge Base
“Partially Ordered

Knowledge Replacement
“Local or Shared KB

Event Queues
single Event Queue
*Multiple Event Queues

Cyberkngine
(Process) [

Enginel

Simulation World Real World

+Stage models/world Sim Node “Neighbor Discovery | Real Node
“Thread Management

“Abstract mobilty model [ Sim Device 0P Communicaton [ o o I

@ Host2

Logical View

Architectural View

Subnet
(tocal network)

Ad-Hoc Mobile:
Network

CyberHost
(Machine)

Cybertngine
(Process)

CyberNode.
(Thread)

CyberNode
(Thread)

4

Events

4

Events

Physical View

\
4 . :
Distributed Declarative Control

« Challenges:

N

Distributed Dynamic Optim

Logical Theory for
Distributed Surveillance by
a Team of Mobile Robots
in an Instrumented Space

Factor « Traditional logics are not designed for distributed reasoning
. °Logics are traditionally closed systems, i.e. not interactive
'« Here we consider the NCPS as a single asset

« Logical theory/specification is available to all nodes

« Nodes contribute resources according to their capabilities
« Knowledge = Facts + Goals is transparently shared

« Facts can represent observations

« Goals can represent control objectives
« Distributed logical framework

« Integrated forward and backward reasoning

« Partial order is essential part of the distributed logic

Forward Clauses:
F1: Noise(T, A) = Trigger(T, A)

= Trigger(T, A).
B) = Adjacent(B, A)

Knowledge
Manager

=

positaning,
Camera)

Backward Clauses:
Interest(Ty, I, R) < Result(Ty, Tr,0, 1), Deliver(Ty, Tr, 1,1, R)
Deliver(Ty, Tr, Np, I, R) < Delivered(Ty, Tr, Np, I, R)
B3: Deliver(Tr, LR) <
Position(Tp, R, A), Position(Th, R, '), R # R,
MoveTo(Ty, Tr, Np,0, 00, R', A), Deliver(Ty, Tr,
BA: Result(Ty, Tr, Np, I') < CompImage(T1, Tr,
. I') < Rawlmage(

Abstract Mobility
Model with two
Robots

WH—T

>

TakeSnapshot
BT: TakeSnapshot(T:
Snapshot(Tr, Tr,

Interest(l,r)

BS: MoveTo(Ty, Tr,Np, W', D, R, B) + Position(Tp, R, B),Tp < D Backward Result() _ i
B9: MoveTo(Ty, W’.D, R, B) « Adjacent(A, B),W' > /=W 1, peasonin Deliver(l,iT®
MoveTo( "D, R, A), Move(T}, Tr, A, B) e Compimage(l)

Replacement Ordering: (f denotes a fact and g a goal and = denotes cither)

Y Rawimage(1) ¢
O1: f: Position(tp,r,...) < f: Position(tp,r,...) if tp < t}p. Match Mpshmm.ﬂ*m
02:2:X(tr,...) < g: Interest(ty,...) if tr < t]. Trigger(TA)Y YgMoveTo(0.0+AtR A) ®-
O3:2: X(tr,tr.np....) < f: Result(ty,tr.np....) if 2: X # f: Result. & ¢
O4:2:X(tr,tp,np,...) < f: Deliver(tr, tp,np,...) it 2: X # [ Deliver. “ V\wmmo‘m,a,m
Variables: T: time, D: snapshot deadline, A and B: area, R: robot, ;’:’E"s":r"‘i’ng ) Trigger(0.0, o- “)Moveraw.oom,re,a)
ntifier, 1 6

I+ image or derived information, N

« Tested with abstract mobility model and Stage multi-robot simulator

« Distributed optimization fits well into the partial-ordered knowledge-sharing model

- - \
ization

Planet Lab Deployment

« Replacement order is defined by objective function (solution fitness)

« Case study: Multi TSP applied to sensor data collection by a team of mobile robots s
« Algorithm: Distributed version of a quantum-evolutionary optimizer '5;
« Optimizer performance is studied on Internet-wide testbed (Planet Lab) M
« Same optimizer can operate as a cyber-node in an NCPS (e.g. in each robot) §:
« Optimization problem becomes dynamic (feedback trough environment) E

« Key features: robustness and fault-tolerance

-&-1thread
a2 thread
S s<athread
~+~8thread
-+ 1 thread-opt|
— 2 thread-opt
4thread-opt
8 thread-opt

8

Possible next steps:

« Generalization: use of a generic optimization framework

« Distributed multi-objective optimization (Pareto optimality)
« Combining optimization and declarative control

« Use of Weighted/Quantitative/Probabilistic Logic

Fitness Value

| With knowledge sharing, fitness of the o1 thread
225 1 solution is approximately constant
230 - regardless of local population size. 2 thread

4 thread
5 7 Without knowledge sharing, -8 thread
20 1 8 engines * 8 threads results in
oor to small
s 0

Robot Opportunistic i local populstion
Stage ) Failure Knowledge o 12 s o4 s 6 s 9w
Multi-Robot Simulator / Sharing \ #ofEngine
O O D O
A = : = . s . 2 ]
L

Constants: Al,g: relative snapshot deadline (max. delay from trigge:
bt bound for weight (diameter of the floor plan)

é
Position(0.0,x,b)

d L] @ [ ]
Noise(0.0,a) Position(5.0,x,a) Snapshot(10.0,x,a) Delivered(i,r)

v




