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An Application Framework for Networked CPS

« Based on new loosely-coupled distributed computing model: / E
Partially Ordered Knowledge Sharing

« Inspired by our earlier work on delay-/disruption-tolerant networking (DTN)

« Minimal assumptions on network connectivity (can be very unreliable)

» Works with dynamic topologies, network partitions, and mobile nodes

« Designed for heterogeneous networking technologies and heterogeneous nodes

« Partial order allows the network to replace obsolete or subsumed knowledge

* Global consistency is not enforced (impossible in challenging environments)
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« Avoids strong non-implementable primitives, e.g. transactions

« Locally each cyber-node uses an event-based model with local time

« Events are local, but knowledge can be shared and cached in the network

« Each cyber-node can have attached cyber-physical devices

*Framework supports
- model-based simulation/analysis mode
- real-world deployment/execution mode

* Applications cannot distinguish

between simulation and reality
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Distributed Declarative Control

« Challenges:

N

Distributed Dynamic Optim

Logical Theory for
Distributed Surveillance by
a Team of Mobile Robots
in an Instrumented Space

Factor « Traditional logics are not designed for distributed reasoning
. °Logics are traditionally closed systems, i.e. not interactive
'« Here we consider the NCPS as a single asset

« Logical theory/specification is available to all nodes

« Nodes contribute resources according to their capabilities
« Knowledge = Facts + Goals is transparently shared

« Facts can represent observations

« Goals can represent control objectives
« Distributed logical framework

« Integrated forward and backward reasoning

« Partial order is essential part of the distributed logic

Forward Clauses:
F1: Noise(T, A) = Trigger(T, A)

= Trigger(T, A).
B) = Adjacent(B, A)
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Backward Clauses:
Interest(Ty, I, R) < Result(Ty, Tr,0, 1), Deliver(Ty, Tr, 1,1, R)
Deliver(Ty, Tr, Np, I, R) < Delivered(Ty, Tr, Np, I, R)
B3: Deliver(Tr, LR) <
Position(Tp, R, A), Position(Th, R, '), R # R,
MoveTo(Ty, Tr, Np,0, 00, R', A), Deliver(Ty, Tr,
BA: Result(Ty, Tr, Np, I') < CompImage(T1, Tr,
. I') < Rawlmage(
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TakeSnapshot
BT: TakeSnapshot(T:
Snapshot(Tr, Tr,

Interest(l,r)

BS: MoveTo(Ty, Tr,Np, W', D, R, B) + Position(Tp, R, B),Tp < D Backward Result() _ i
B9: MoveTo(Ty, W’.D, R, B) « Adjacent(A, B),W' > /=W 1, peasonin Deliver(l,iT®
MoveTo( "D, R, A), Move(T}, Tr, A, B) e Compimage(l)

Replacement Ordering: (f denotes a fact and g a goal and = denotes cither)

Y Rawimage(1) ¢
O1: f: Position(tp,r,...) < f: Position(tp,r,...) if tp < t}p. Match Mpshmm.ﬂ*m
02:2:X(tr,...) < g: Interest(ty,...) if tr < t]. Trigger(TA)Y YgMoveTo(0.0+AtR A) ®-
O3:2: X(tr,tr.np....) < f: Result(ty,tr.np....) if 2: X # f: Result. & ¢
O4:2:X(tr,tp,np,...) < f: Deliver(tr, tp,np,...) it 2: X # [ Deliver. “ V\wmmo‘m,a,m
Variables: T: time, D: snapshot deadline, A and B: area, R: robot, ;’:’E"s":r"‘i’ng ) Trigger(0.0, o- “)Moveraw.oom,re,a)
ntifier, 1 6

I+ image or derived information, N

« Tested with abstract mobility model and Stage multi-robot simulator

« Distributed optimization fits well into the partial-ordered knowledge-sharing model
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Planet Lab Deployment

« Replacement order is defined by objective function (solution fitness)

« Case study: Multi TSP applied to sensor data collection by a team of mobile robots s
« Algorithm: Distributed version of a quantum-evolutionary optimizer '5;
« Optimizer performance is studied on Internet-wide testbed (Planet Lab) M
« Same optimizer can operate as a cyber-node in an NCPS (e.g. in each robot) §:
« Optimization problem becomes dynamic (feedback trough environment) E

« Key features: robustness and fault-tolerance
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Possible next steps:

« Generalization: use of a generic optimization framework

« Distributed multi-objective optimization (Pareto optimality)
« Combining optimization and declarative control

« Use of Weighted/Quantitative/Probabilistic Logic
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Constants: Al,g: relative snapshot deadline (max. delay from trigge:
bt bound for weight (diameter of the floor plan)

é
Position(0.0,x,b)

d L] @ [ ]
Noise(0.0,a) Position(5.0,x,a) Snapshot(10.0,x,a) Delivered(i,r)

v




